Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

AMU MCA Previous Year Questions (PYQs)

AMU MCA 2021 PYQ


AMU MCA PYQ 2021
Find number of page faults for FIFO (First In First Out) page replacement policy if only 3 pages can be loaded at time Reference string: 5, 4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Simulating FIFO with 3 frames:

5 F
5 4 F
5 4 3 F
4 3 2 F
3 2 1 F
2 1 4 F
1 4 3 F
4 3 5 F
3 5 4 F
5 4 3 F
4 3 2 F
3 2 1 F
2 1 5 F

Total page faults = 13

AMU MCA PYQ 2021
If we need to download text documents at rate of 1000 pages per minute. Each page has 24 lines with 80 characters per line. Find required bit rate.





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Characters per page = 24 × 80 = 1920 Assume 1 character = 8 bits Bits per page = 1920 × 8 = 15360 bits 1000 pages/min = 15360000 bits/min Bits/sec = 15360000 / 60 = 256000 bps = 0.256 Mbps

AMU MCA PYQ 2021
If every non-key attribute is functionally dependent on primary key, relation is in at least:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

This condition satisfies 2NF (no partial dependency).

AMU MCA PYQ 2021
If every non-key attribute is functionally dependent on primary key, relation is in at least:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

This condition satisfies 2NF (no partial dependency).

AMU MCA PYQ 2021
Runtime polymorphism is implemented by:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Runtime polymorphism uses Virtual Functions.

AMU MCA PYQ 2021
Which sorting method is best if number of swapping is only measure of efficiency?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Selection sort performs minimum swaps (n−1 swaps).

AMU MCA PYQ 2021
Maximum number of comparisons needed to sort 7 items using radix sort (each item 4-digit decimal):





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Radix sort does not compare elements like comparison sort. Comparisons are not primary operation. Approx operations = digits × items = 4 × 7 = 28

AMU MCA PYQ 2021
What is the output of this C code?
#include <stdio.h>
int main()
{
printf("Hello World! %d \n", x);
return 0;
}





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Variable x is not declared. Compiler error will occur.

AMU MCA PYQ 2021
QoS stands for





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

QoS in networking means Quality of Service.

AMU MCA PYQ 2021
A graph in which all nodes are of equal degree is called





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

If every vertex has the same degree, it is called a regular graph.

AMU MCA PYQ 2021
Which of these data types is used by operating system to manage recursion in Java/C/C++?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Recursion uses function call stack (LIFO).

AMU MCA PYQ 2021
What is the binary equivalent of the decimal number 368?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$368 = 256 + 64 + 32 + 16$ $= 2^8 + 2^6 + 2^5 + 2^4$ Binary $= 101110000$

AMU MCA PYQ 2021
Which of the following is not a storage class supported by C++?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

C++ storage classes: auto, register, static, extern, mutable dynamic is not a storage class keyword.

AMU MCA PYQ 2021
In C++, the declaration
int x; int &p = x;

is same as the declaration
int x, *p; p = &x;

This remark is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Reference (&) is not same as pointer (*). Reference cannot be reseated, pointer can.

AMU MCA PYQ 2021
Assume rand() returns an integer between 0 and 10000 (both inclusive). To simulate throwing a die:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Dice values = 1 to 6 rand() % 6 gives 0–5 Add 1 → 1–6

AMU MCA PYQ 2021
For a method to be an interface between the outside world and a C++ class, it must be declared





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

To be accessible from outside the class, it must be public.

AMU MCA PYQ 2021
To sort many large objects or structures, it is most efficient to place





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Sorting pointers avoids copying large objects.

AMU MCA PYQ 2021
Consider a noise less channel with bandwidth of 3000 Hz transmitting a signal with two signal levels. Maximum bit rate can be





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Using Nyquist Formula: $C = 2B \log_2 M$ Here $B = 3000$, $M = 2$ $C = 2 \times 3000 \times \log_2 2$ $= 6000 \times 1$ $= 6000$ bps

AMU MCA PYQ 2021
Express the boolean function $F = xy + x'z$ in product of maxterms form





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Find minterms where $F=1$

$F = xy + x'z$

Truth table gives 1 at minterms: $m(1,3,6,7)$

So zeros at: $0,2,4,5$

Product of maxterms form:

$\pi(0,2,4,5)$

AMU MCA PYQ 2021
In C++, a variable defined within a block is visible





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Block scope variable is visible only inside that block from its declaration onward.

AMU MCA PYQ 2021
Salim, the son of Murad, is married to Sanna. Sanna’s sister Jabeen is married to Ayaan, the brother of Salim. How is Jabeen related to Murad?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Salim is Murad’s son. Ayaan is Salim’s brother → also Murad’s son. Jabeen is married to Ayaan → wife of Murad’s son. So Jabeen is Murad’s daughter-in-law.

AMU MCA PYQ 2021
Santosh goes first 7 km North, then turns left and moves 10 km, again turns left and moves 7 km. How far is he from starting point?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

North 7 → West 10 → South 7 Final position: 10 km West of starting point Distance = 10 km

AMU MCA PYQ 2021
Neeta starting from point X walked 5 km West, turned left walked 2 km, again turned left walked 7 km. In which direction is she from X?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

West 5 → South 2 → East 7

Net: 2 km East and 2 km South

Direction = South-East

AMU MCA PYQ 2021
Find the missing in the following:

ACE, GIK, _____, SUN





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Pattern: Each term letters increase by +2

A C E
G I K
Next: M O Q
S U N (pattern continues)

AMU MCA PYQ 2021
Find the missing sequence:

25, 49, 121, 169, _____





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Squares of prime numbers:

$5^2 = 25$
$7^2 = 49$
$11^2 = 121$
$13^2 = 169$
Next prime = 17

$17^2 = 289$

AMU MCA PYQ 2021
The empirical relationship between mean, median and mode is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$Mode = 3Median − 2Mean$

Rearranging:

$Mean − Mode = 3(Mean − Median)$

AMU MCA PYQ 2021
Select the pair that has the same relationship as the original pair
East : Orient





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Orient means East.
Occident means West.

Same synonym relationship.

AMU MCA PYQ 2021
Find the missing (?) $\frac{1}{2} : 2 :: \frac{x}{7} : ?$





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Pattern: Reciprocal relation

$\frac{1}{2} \rightarrow 2$

So $\frac{x}{7} \rightarrow \frac{7}{x}$

If $x = 7$ → result = 1
Matching best given option = 3

AMU MCA PYQ 2021
Find the missing sequence 1, 1, 2, 3, ____, 8, 13





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

This is Fibonacci sequence

1, 1, 2, 3, 5, 8, 13

AMU MCA PYQ 2021
Find the missing B : 16 :: D : ?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

B = 2 → $2^4 = 16$ D = 4 → $4^4 = 256$

AMU MCA PYQ 2021
Let $f(x,y) = x^3 + y^3$ for all $(x,y) \in \mathbb{R}^2$. Then





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$f_x = 3x^2$ $f_y = 3y^2$ At (0,0) → critical point Second derivatives: $f_{xx} = 6x$, $f_{yy} = 6y$ At (0,0) → 0 Function changes sign around origin → saddle point

AMU MCA PYQ 2021
Let $T : P_2(x) \to P_2(x)$ be a linear transformation on vector space $P_2(x)$ (polynomials of degree $\le 2$ over $\mathbb{R}$) such that $T(f(x)) = \dfrac{d}{dx}(f(x))$. Then the matrix of $T$ w.r.t. basis ${1, x, x^2}$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution


AMU MCA PYQ 2021
If $x + y + z = u$ $y + z = uv$ $z = uvw$ then the value of the Jacobian $\dfrac{\partial(x,y,z)}{\partial(u,v,w)}$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Given $z = uvw$ $y + z = uv$ $\Rightarrow y = uv - uvw = uv(1 - w)$ Now $x + y + z = u$ $\Rightarrow x = u - y - z$ Substitute: $x = u - uv(1 - w) - uvw$ $x = u - uv + uvw - uvw$ $x = u - uv$ $x = u(1 - v)$ So, $x = u(1 - v)$ $y = uv(1 - w)$ $z = uvw$

AMU MCA PYQ 2021
The polar coordinates of pole are





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Pole means origin. At origin: $r = 0$ Angle $\theta$ can take any value. So angle is undefined.

AMU MCA PYQ 2021
Let the equation of a straight line passing through point $A(\alpha,\beta,\gamma)$ and having direction ratios $l,m,n$ be $\dfrac{x-\alpha}{l}=\dfrac{y-\beta}{m}=\dfrac{z-\gamma}{n}=r$ Suppose $P$ is any arbitrary point on this line with coordinates $(\alpha+lr,\beta+mr,\gamma+nr)$. Geometrically, $r$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Distance $AP = \sqrt{(lr)^2+(mr)^2+(nr)^2}$ $= |r|\sqrt{l^2+m^2+n^2}$ So distance is proportional to $r$.

AMU MCA PYQ 2021
The volume of the solid generated by revolving the region between the y-axis and the curve $x=2\sqrt{y}, \ 0\le y\le4$ about the y-axis is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Using washer method: $V=\pi\int_0^4 (2\sqrt{y})^2 dy$ $=\pi\int_0^4 4y,dy$ $=4\pi\left[\frac{y^2}{2}\right]_0^4$ $=4\pi \times 8$ $=32\pi$

AMU MCA PYQ 2021
If $U={(x,y)\in\mathbb R^2\mid y=mx}$ and $W={(x,y)\in\mathbb R^2\mid y=tx,\ t\ne m}$ Then $\dim(U+W)$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Both are distinct lines through origin. Their sum spans $\mathbb R^2$. So dimension = 2.

AMU MCA PYQ 2021
If $\lambda$ is an eigenvalue of a non-singular matrix $A$, then the characteristic root of adj $A$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Eigenvalue of adj $A$ is $\dfrac{|A|}{\lambda}$

AMU MCA PYQ 2021
The solution of $y' = 2px + \tan^{-1}(xp^2)$ (where $p=\dfrac{dy}{dx}$) is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Assume $p=c$ Then $y=cx+\tan^{-1}(c^2x)$

AMU MCA PYQ 2021
The extremal of functional $\iint_D\left[\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2+\left(\frac{\partial^2 z}{\partial x\partial y}\right)^2\right]dxdy$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution


AMU MCA PYQ 2021
The complete solution of $(p^2+q^2)=qz$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$z=(a^2+b^2)x+by$

AMU MCA PYQ 2021
Which of the following function is continuous at origin?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$z=(a^2+b^2)x+by$

AMU MCA PYQ 2021
The solution of the differential equation $ \dfrac{d^2y}{dx^2} - 2\dfrac{dy}{dx} + y = xe^x \sin x $





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Auxiliary equation: $ m^2 - 2m + 1 = 0 $ $ (m-1)^2 = 0 $ So CF: $ y_c = (c_1 + c_2 x)e^x $ Particular integral gives: $ y_p = e^x(2\cos x + x\sin x) $ Therefore, $ y = (c_1 + c_2 x)e^x + e^x(2\cos x + x\sin x) $

AMU MCA PYQ 2021
The centre of a rectangular hyperbola lies on the line $y=2x$. If one of the asymptotes is $x+y+c=0$, then the other asymptote is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Given asymptote slope = $-1$. For rectangular hyperbola, slopes of asymptotes are negative reciprocals. So other slope = $1$. Required line of slope 1 through centre gives: $x - y - c = 0$

AMU MCA PYQ 2021
The derivative of $f(x,y)=x^2+xy$ at $P_0(1,1)$ in the direction of unit vector $\vec{u}=\left(\frac{1}{\sqrt{2}}\right)\hat{i}+\left(\frac{1}{\sqrt{2}}\right)\hat{j}$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$\nabla f=(2x+y, x)$ At $(1,1)$: $\nabla f=(3,1)$ Directional derivative: $D_{\vec{u}}f=(3,1)\cdot\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ $=\frac{3+1}{\sqrt{2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}$

AMU MCA PYQ 2021
If $u=f(x-y,y-z,z-x)$, then the value of $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Using chain rule, derivatives cancel out. Result: $=0$

AMU MCA PYQ 2021
The continuous function $f:\mathbb{R}\to\mathbb{R}$ defined by $f(x)=\sqrt{x^2+1}$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Range: $[1,\infty)$ Not onto $\mathbb{R}$ Not one-one (since $f(x)=f(-x)$)

AMU MCA PYQ 2021
Let $\mathbb{R}^3={(x,y,z)}$ and $W$ be the subspace generated by ${(1,2,-3)}$. Geometrically, $W$ represents





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Single vector span ⇒ line through origin Direction ratios: $1,2,-3$ Direction cosines: $\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{-3}{\sqrt{14}}$

AMU MCA PYQ 2021
Let $f(x,y)=\begin{cases} 0,& xy\ne0\ 1,& xy=0 \end{cases}$ Which is true?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Limit at $(0,0)$ depends on path. So not continuous. Partials do not exist.

AMU MCA PYQ 2021
Let $f(x,y)=\begin{cases} 0,& xy\ne0\ 1,& xy=0 \end{cases}$ Which is true?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Limit at $(0,0)$ depends on path. So not continuous. Partials do not exist.

AMU MCA PYQ 2021
The value of $ \displaystyle \int_0^{\infty} \frac{y^x,dx,dy}{x^2+y^2} $ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Using standard double integral result over first quadrant: $ \int_0^\infty \int_0^\infty \frac{dx,dy}{x^2+y^2} = \frac{\pi}{4} $

AMU MCA PYQ 2021
The value of $ \iiint_V z,dx,dy,dz $ where $V$ is cylinder bounded by $z=0,\ z=1,\ x^2+y^2=4$





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Volume element in cylindrical coordinates: $ \int_0^1 z,dz \int_{r=0}^2 r,dr \int_0^{2\pi} d\theta $ $= \left[\frac{1}{2}\right] \cdot \left[2\right] \cdot (2\pi)$ $= 2\pi$

AMU MCA PYQ 2021
The greatest value of $f(x,y)=xy$ on ellipse $ \frac{x^2}{8}+\frac{y^2}{2}=1 $





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Using Lagrange multipliers, maximum occurs at $ x=2,\ y=1 $ So $ xy=2 $

AMU MCA PYQ 2021
The third order divided difference of $ \frac{1}{x} $ based on arguments $x_0,x_1,x_2,x_3$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$ f[x_0,x_1,x_2,x_3]= -\frac{1}{x_0x_1x_2x_3}$

AMU MCA PYQ 2021
Which of the following is incorrect?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$ \nabla \times \nabla V=0 $

AMU MCA PYQ 2021
The locus of points from which three mutually perpendicular tangents can be drawn to $ ax^2+by^2=2z $ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Standard result for paraboloid: $ a(x^2+y^2)-(a+b)z=1 $

AMU MCA PYQ 2021
If $y_1=4,\ y_2=12,\ y_4=19$ and $y_x=7$ then value of $x$ is approx





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$x \approx 1.86$

AMU MCA PYQ 2021
An integrating factor for $ (y^2+2y),dx+(2xy+x^2),dy=0 $ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$ x^{-1/3}y^{-5/3} $

AMU MCA PYQ 2021
If $y_1$ and $y_2$ are two solutions of $ y''+p(x)y'+q(x)y=0 $ and Wronskian $W(y_1,y_2)=0$, then $y_1,y_2$ are





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

If Wronskian = 0 ⇒ solutions are linearly dependent.

AMU MCA PYQ 2021
The equation of a circular cylinder, whose guiding curve is $ x^2+y^2+z^2=9,\quad x-y+z=3 $ will be





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Eliminate the plane equation from sphere to get quadratic surface representing cylinder. Correct reduction gives: $ x^2+y^2+z^2+xy+yz-zx-9=0 $

AMU MCA PYQ 2021
In case of two-way classification with $r$ rows and $c$ columns, the degree of freedom for error is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

In two-way ANOVA:

AMU MCA PYQ 2021
Let $x_1=2.2,\ x_2=4.1,\ x_3=3.4,\ x_4=4.5,\ x_5=1.1,\ x_6=5.7$ be sample from $U(0,\theta)$. Then MLE of $\theta$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

For $U(0,\theta)$, $\hat{\theta}_{MLE}=\max(x_i)$ Maximum = $5.7$

AMU MCA PYQ 2021
If $X_1,\dots,X_n$ are Bernoulli with probability $p$, then constant estimate of $p(1-p)$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Since $\hat{p}=\bar{X}$, Estimate of $p(1-p)$ is $\bar{X}(1-\bar{X})$

AMU MCA PYQ 2021
Let $E(X)=\mu$, $Var(X)=9$. Smallest $m$ such that $P(|X-\mu|




Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Using Chebyshev inequality:

$P(|X-\mu|\ge m)\le \frac{Var(X)}{m^2}$

$1-\frac{9}{m^2}\ge 0.99$

$\frac{9}{m^2}\le 0.01$

$m^2\ge 900$

$m=30$

AMU MCA PYQ 2021
If the mean and variance of a binomial variate $X$ are 8 and 4 respectively, then $P(X<3)$ equals:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

For binomial distribution:

Mean $=np=8$
Variance $=np(1-p)=4$

So,

$8(1-p)=4$

$1-p=\frac12$

$p=\frac12$

Then $n=16$

Now,

$P(X<3)=P(0)+P(1)+P(2)$

$= \frac{\binom{16}{0}+\binom{16}{1}+\binom{16}{2}}{2^{16}}$

$= \frac{1+16+120}{2^{16}}$

$= \frac{137}{2^{16}}$

AMU MCA PYQ 2021
For a normal distribution, the coefficient of Kurtosis $\beta_2$ and $\gamma_2$ are:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$ \beta_2=3 $

$ \gamma_2=\beta_2-3=0 $

AMU MCA PYQ 2021
If $X$ is the number of heads obtained in four tosses of a balanced coin. Define $ Y=\dfrac{1}{1+X} $ Find $P\left(Y=\frac{1}{3}\right)$





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$Y=\frac{1}{3} \Rightarrow 1+X=3 \Rightarrow X=2$ So we need: $P(X=2)$ For 4 tosses: $P(X=2)=\binom{4}{2}\left(\frac12\right)^4$ $=\frac{6}{16}=\frac{3}{8}$

AMU MCA PYQ 2021
Given regression equations: $8X-10Y+66=0$ $40X-18Y=214$ Find correlation coefficient $r$.





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Slope from first equation: $Y=\frac{8}{10}X+\text{const}$ Slope from second: $X=\frac{18}{40}Y+\text{const}$ Product of regression coefficients: $r^2=\frac{8}{10}\cdot\frac{18}{40}$ $=\frac{144}{400}=0.36$ $r=0.6$

AMU MCA PYQ 2021
First four moments about 5 are: $2,20,40,50$ Find S.D.





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Mean about 5: $\mu_1'=2$ Actual mean: $=5+2=7$ Variance: $\mu_2=20-2^2=16$ S.D.: $=\sqrt{16}=4$

AMU MCA PYQ 2021
Given: $P(A)=\frac13$ $P(B)=\frac14$ $P(A\cup B)=\frac{11}{12}$ Find $P(B|A)$





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$P(A\cup B)=P(A)+P(B)-P(A\cap B)$ $\frac{11}{12}=\frac13+\frac14-P(A\cap B)$ $\frac{11}{12}=\frac{4}{12}+\frac{3}{12}-P(A\cap B)$ $\frac{11}{12}=\frac{7}{12}-P(A\cap B)$ $P(A\cap B)=\frac{7}{12}-\frac{11}{12}$ $=-\frac{4}{12}$ ❌ (impossible) So correcting arithmetic: Actually: $\frac13=\frac{4}{12}$ $\frac14=\frac{3}{12}$ Sum = $\frac{7}{12}$ Thus: $\frac{11}{12}=\frac{7}{12}-P(A\cap B)$ $P(A\cap B)=\frac{7}{12}-\frac{11}{12}=-\frac{4}{12}$ Impossible → recheck union value (image likely misprint). Correct expected option from standard setup: $P(B|A)=\frac12$

AMU MCA PYQ 2021
If $g$ is convex and $X$ is random variable, then:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

By Jensen's inequality: $E[g(X)]\ge g(E[X])$

AMU MCA PYQ 2021
If $X$ follows geometric distribution, then: $P(X\ge j+k|X\ge j)=$





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Geometric distribution has memoryless property: $P(X\ge j+k|X\ge j)=P(X\ge k)$

AMU MCA PYQ 2021
Let $X\sim N(\mu,\sigma^2)$ where both unknown. Test hypothesis:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Simple hypothesis specifies both parameters. So correct simple hypothesis: $H_0:\mu=2,\sigma=4$

AMU MCA PYQ 2021
Bowley’s coefficient of skewness is based on





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Bowley’s coefficient uses quartiles: $Sk = \dfrac{Q_3 + Q_1 - 2Q_2}{Q_3 - Q_1}$

AMU MCA PYQ 2021
If a constant value 5 is subtracted from each observation of a set, the variance is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Variance is independent of change of origin.

AMU MCA PYQ 2021
Census survey is free from





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Census includes entire population → no sampling involved.

AMU MCA PYQ 2021
The skewness in a binomial distribution will be zero, if





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Skewness of binomial:

$\gamma = \dfrac{1-2p}{\sqrt{np(1-p)}}$

Zero when:

$1-2p=0$

$p=\frac12$

AMU MCA PYQ 2021
If experimental material is homogeneous, then suitable design is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

For homogeneous units, Completely Randomized Design (CRD) is best.

AMU MCA PYQ 2021
A particle of mass 2 kg is moving such that its position is given by $P(t)=5\hat{i}-2t^2\hat{j}$ Find angular momentum at $t=2$ sec about origin.





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Position at $t=2$:

$\vec{r}=5\hat{i}-8\hat{j}$

Velocity:

$\vec{v}=\frac{d\vec{r}}{dt}=-4t\hat{j}$

At $t=2$:

$\vec{v}=-8\hat{j}$

Momentum:

$\vec{p}=m\vec{v}=2(-8\hat{j})=-16\hat{j}$

Angular momentum:

$\vec{L}=\vec{r}\times\vec{p}$

$=(5\hat{i}-8\hat{j})\times(-16\hat{j})$

$= -80\hat{k}$


AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...